SEPABEADS™ SP207 is modified highly porous styrenic adsorbents. It has higher hydrophobicity and greater selectivity for non-polar molecules, which is derived from chemically bonded bromine to the aromatic rings, than standard aromatic adsorbents. It is suitable for upward flow and batch processes due to its high particle density.

SEPABEADS™ SP207 is characterized by:

- >> Unique chemical structure and higher hydrophobicity
- >> High particle density >> High chemical and physical stability
- >> Excellent batch-to-batch reproducibly >> Wide application

Physical and chemical properties

		Physical and chemical properties
SEPABEADS [™] SP207		Grade Name
Spherical, porous		Bead form
ified polystyrene/divinylbenzene	Modif	Matrix
$-CH_2-CH-CH_2-CH-$ $-CH-CH_2-$ Br		Chemical Structure
- 95 min.	-	Whole Bead Count
	g/L	Shipping Density*
43 - 53	%	Water content
10 max.	%	Particle Size Distribution thr. 250 μm
n 0.25 min.	mm	Effective size
- 1.6 max.	-	Uniformity Coefficient
1.18	g/mL	Particle Density*
600	m^2/g	Specific Surface Area*
1.0	mL/g	Pore Volume*
110	Å	Pore Radius*

Note: properties with a mark "*" are referential data.

Swelling ratio in various solvents

Methanol	1.10
Ethanol	1.11
2-Propanol	1.12
Acetone	1.13
Toluene	1.13
Acetonitrile	1.12
Water	1.00

Pore size distribution

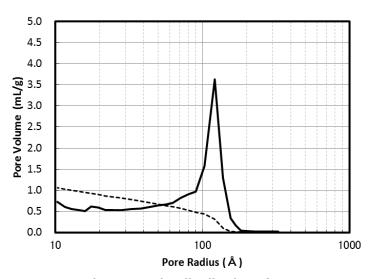


Fig. 1 Pore size distribution of SP207

Recommended Operating Conditions

130	°C	Maximum Operating Temperature
0 - 14		Operating pH Range
800	mm	Minimum Bed Depth
Loading 0.5 - 5	BV/h	Flow rate
Displacement 0.5 - 2	BV/h	
Regeneration 0.5 - 2	BV/h	
Rince 1 - 5	BV/h	
		Regenerant
Organic solvents for hydrophobic compounds		

Bases for acidic compounds
Acids for basic compounds
Buffer solution for pH sensitive compounds
Water for an ionic solution
Hot steam for volatile compounds

Hydraulic Characteristics

The approximate pressure drop at various temperatures and flow rates for each meter of bed depth of SEPABEADSTM SP207 resin in normal down flow operation is shown in the graph below.

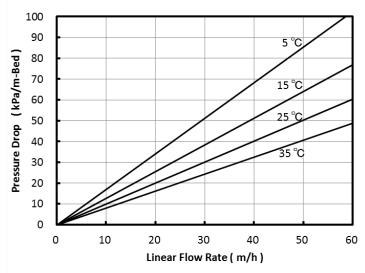


Fig. 2 Pressure Drop of SP207

Applications

- Purification of small peptides, oligonucleotides and proteins
- Adsorption of vitamins, antibiotics, enzymes, steroids and other substance from fermentation solutions
- Decolorization of various sugar solutions
- Adsorption of fatty acids
- Removal of phenol
- Adsorption of various perfume
- Decolorization and purification of various chamicals

Storage condition

Synthetic adsorbents are recommended to store properly in order to avoid a high risk for mold growth. The proper storage typically allows any synthetic adsorbent resin to last for a year after production before onset of any such growth.

The best storage condition is with 20% of alcohol such as ethanol or isopropanol. A 10% or higher concentration of salt solution, such as NaCl, is also recommended to preserve new or used resin for long storage.

In case salt cannot be used, a 0.01 to 0.02 N of NaOH solution could be accepted as mold cannot withstand survival at pH higher than 12.

Storage at freezing temperature should be avoided at all cost as it may cause breakage or crush of resin particles.

Notice

This information are given in good faith but without warranty, and this also applies where proprietary rights of third parties are involved. The application, use and processing of our products are beyond our control and therefore your own responsibility.